Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Hematol., Transfus. Cell Ther. (Impr.) ; 44(3): 386-391, July-Sept. 2022. tab, ilus
Article in English | LILACS | ID: biblio-1404989

ABSTRACT

ABSTRACT Introduction: Prevalence of RhD negative phenotype in Nigeria is low; this leads to scarcity of RhD negative red cells for transfusion. Serological and molecular genotyping of RhD negative individuals for weak D types could reduce this scarcity. The aim of this study was to determine the serological prevalence and molecular types of weak D phenotypes among blood donors and pregnant women in Kano, Nigeria. Methods: A total of 4482 blood donors and pregnant women from three hospitals in Kano were recruited. An indirect antiglobulin test was used to determine weak D phenotypes. Molecular genotyping was performed on genomic DNA from whole blood amplified by polymerase chain reaction sequence-specific primers (PCR-SSP) with agarose gel electrophoresis. Results: The mean age of the participants was 26.50 ±5.79 years. The prevalence of the RhD negative phenotype was 4.2% (189/4482). Of the 189 RhD negative phenotypes, 20 (10.6%) were weak D positive. Molecular genotyping of the 20 Weak D positive phenotypes revealed 15 (75%) weak D type 4, of which 11 were due to the RHD*09.03 and RHD*DAR3 (T201R, F223V) polymorphisms and 4, due to RHD* 08.01 and RHD* DFV polymorphisms; 2 (10%) were due to the 602 C>G polymorphism, while the remaining 3 (15%) constituted partial D or other rare weak D types. Conclusion: The prevalence of weak D positive phenotypes is high in this study; weak D type 4 is the most common RhD genetic variant. Routine serologic weak D testing of RhD negative blood and molecular genotyping should be encouraged in resource-limited settings.


Subject(s)
Humans , Male , Female , Blood Transfusion , Genotyping Techniques , Phenotype , Serology , Nigeria
SELECTION OF CITATIONS
SEARCH DETAIL